Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(18): 5577-5588, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32526015

RESUMO

The quality of yield prediction is linked to that of leaf area. We first analysed the consequences of flowering time and environmental conditions on the area of individual leaves in 127 genotypes presenting contrasting flowering times in fields of Europe, Mexico, and Kenya. Flowering time was the strongest determinant of leaf area. Combined with a detailed field experiment, this experiment showed a large effect of flowering time on the final leaf number and on the distribution of leaf growth rate and growth duration along leaf ranks, in terms of both length and width. Equations with a limited number of genetic parameters predicted the beginning, end, and maximum growth rate (length and width) for each leaf rank. The genotype-specific environmental effects were analysed with datasets in phenotyping platforms that assessed the effects (i) of the amount of intercepted light on leaf width, and (ii) of temperature, evaporative demand, and soil water potential on leaf elongation rate. The resulting model was successfully tested for 31 hybrids in 15 European and Mexican fields. It potentially allows prediction of the vertical distribution of leaf area of a large number of genotypes in contrasting field conditions, based on phenomics and on sensor networks.


Assuntos
Folhas de Planta , Zea mays , Europa (Continente) , Solo , Água , Zea mays/genética
2.
Nat Genet ; 51(6): 952-956, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110353

RESUMO

The development of germplasm adapted to changing climate is required to ensure food security1,2. Genomic prediction is a powerful tool to evaluate many genotypes but performs poorly in contrasting environmental scenarios3-7 (genotype × environment interaction), in spite of promising results for flowering time8. New avenues are opened by the development of sensor networks for environmental characterization in thousands of fields9,10. We present a new strategy for germplasm evaluation under genotype × environment interaction. Yield was dissected in grain weight and number and genotype × environment interaction in these components was modeled as genotypic sensitivity to environmental drivers. Environments were characterized using genotype-specific indices computed from sensor data in each field and the progression of phenology calibrated for each genotype on a phenotyping platform. A whole-genome regression approach for the genotypic sensitivities led to accurate prediction of yield under genotype × environment interaction in a wide range of environmental scenarios, outperforming a benchmark approach.


Assuntos
Agricultura , Meio Ambiente , Genoma de Planta , Genômica , Fenótipo , Zea mays/genética , Grão Comestível , Europa (Continente) , Interação Gene-Ambiente , Estudos de Associação Genética , Genômica/métodos , Geografia
3.
Proc Natl Acad Sci U S A ; 115(42): 10642-10647, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275304

RESUMO

Projections based on invariant genotypes and agronomic practices indicate that climate change will largely decrease crop yields. The comparatively few studies considering farmers' adaptation result in a diversity of impacts depending on their assumptions. We combined experiments and process-based modeling for analyzing the consequences of climate change on European maize yields if farmers made the best use of the current genetic variability of cycle duration, based on practices they currently use. We first showed that the genetic variability of maize flowering time is sufficient for identifying a cycle duration that maximizes yield in a range of European climatic conditions. This was observed in six field experiments with a panel of 121 accessions and extended to 59 European sites over 36 years with a crop model. The assumption that farmers use optimal cycle duration and sowing date was supported by comparison with historical data. Simulations were then carried out for 2050 with 3 million combinations of crop cycle durations, climate scenarios, management practices, and modeling hypotheses. Simulated grain production over Europe in 2050 was stable (-1 to +1%) compared with the 1975-2010 baseline period under the hypotheses of unchanged cycle duration, whereas it was increased (+4-7%) when crop cycle duration and sowing dates were optimized in each local environment. The combined effects of climate change and farmer adaptation reduced the yield gradient between south and north of Europe and increased European maize production if farmers continued to make the best use of the genetic variability of crop cycle duration.


Assuntos
Agricultura/métodos , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Adaptação Fisiológica , Agricultura/tendências , Europa (Continente) , Fatores de Tempo
4.
Plant Cell Environ ; 40(9): 2017-2028, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639691

RESUMO

Leaf expansion depends on both carbon and water availabilities. In cereals, most of experimental effort has focused on leaf elongation, with essentially hydraulic effects. We have tested if evaporative demand and light could have distinct effects on leaf elongation and widening, and if short-term effects could translate into final leaf dimensions. For that, we have monitored leaf widening and elongation in a field experiment with temporary shading, and in a platform experiment with 15 min temporal resolution and contrasting evaporative demands. Leaf widening showed a strong (positive) sensitivity to whole-plant intercepted light and no response to evaporative demand. Leaf elongation was (negatively) sensitive to evaporative demand, without effect of intercepted light per se. We have successfully tested resulting equations to predict leaf length and width in an external dataset of 15 field and six platform experiments. These effects also applied to a panel of 251 maize hybrids. Leaf length and width presented quantitative trait loci (QTLs) whose allelic effects largely differed between both dimensions but were consistent in the field and the platform, with high QTL × Environment interaction. It is therefore worthwhile to identify the genetic and environmental controls of leaf width and leaf length for prediction of plant leaf area.


Assuntos
Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/fisiologia , Zea mays/fisiologia , Zea mays/efeitos da radiação , Alelos , Meio Ambiente , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas/genética , Fatores de Tempo , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...